skip to main content


Search for: All records

Creators/Authors contains: "Banerjee, Parag"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High harmonic generation (HHG) in solids has been identified as a promising mechanism for light source generation and for spectroscopy of materials. HHG from bulk solids, however, often suffers from nonlinear propagation effects, resulting in a loss of spectral coherence and the skewing of spectroscopic measurements. Here, we study HHG in epitaxial ZnO thin films grown on Al2O3substrates using atomic layer deposition. We find that the HHG emission consists of narrow spectral peaks, in contrast to those seen in bulk, and that the dependence of the harmonic yield on the film thickness differs for above-gap and below-gap harmonics, which can be understood from analytical models based on the linear and nonlinear response of the medium. The measured harmonic spectra depend qualitatively on the preparation of the films, with as-grown films generating even harmonic orders, which are absent in annealed films. The results are interpreted using transmission electron microscopy measurements, which indicate different morphologies for the as-grown and annealed films.

     
    more » « less
  2. Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable candidates for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to an increased surface area and the presence of oxygen vacancies. Concomitantly, the treatments that induce oxygen vacancies also impact other material properties, such as the microstrain, crystallinity, oxidation state, and particle shape. Herein, multivariate statistical analysis is used to disentangle the impact of material properties of CuO nanoparticles on catalytic rates for nitroaromatic and methylene blue reduction. The impact of the microstrain, shape, and Cu(0) atomic percent is demonstrated for these reactions; furthermore, a protocol for correlating material property parameters to catalytic efficiency is presented, and the importance of catalyst design for these broadly utilized probe reactions is highlighted. 
    more » « less
    Free, publicly-accessible full text available January 12, 2025
  3. We study high-order harmonic generation from epitaxial ZnO films grown on Al2O3substrate. We observe a saturation of the harmonic intensity for a film thickness of 30 nm. 
    more » « less
  4. Rigorous coupled wave analysis (RCWA) is conducted on in situ spectroscopic ellipsometry data to understand profile evolution during film deposition inside nanotrenches. Lithographically patterned SiO 2 nanotrenches are used as test structures. The nanotrenches are 170 nm wide at the top with a taper angle of 4.5° and are 300 nm in depth. Atomic layer deposition of ZnO is used as a model process where the thickness (cycles) of the film is varied from 0 (0 cycles) to 46 nm (300 cycles). The analysis predicts transient behavior in deposition affecting film conformality and changes to the trench taper angle. In the process, the aspect ratio varies from 2.05 at the start of the process to 6.67 at the end. The model predicts changes in the refractive index of the ZnO film as a function of thickness. The real and imaginary parts of the refractive index at a wavelength of 350 nm change from 1.81 to 2.37 and 0.25 to 0.87, respectively. Scanning electron microscopy cross sections confirm thickness at the top and bottom of the trench to within 13% of those predicted by RCWA. The experimentally measured conformality degrades as film deposition proceeds from 97.3% at 100 cycles to 91.1% at 300 cycles. These results demonstrate the potential of using RCWA for continuous and in situ monitoring of growth inside 3D nanostructures. 
    more » « less
  5. We study the carrier-envelope phase (CEP) dependence of high-order harmonics generated in bulk ZnO crystals. The CEP dependence measured for laser polarization oriented parallel to and perpendicular to the c-axis exhibit different periodicities. 
    more » « less
  6. The growth of atomic layer deposited (ALD) Al2O3 on planar ZnSe substrates is studied using in situ spectroscopic ellipsometry. An untreated ZnSe surface requires an incubation period of 27 cycles of ALD Al2O3 before film growth is observed. Pretreating the surface with an ultraviolet generated ozone lowers the incubation to 17 cycles, whereas a plasma-enhanced ALD Al2O3 process can further lower the incubation period to 13 cycles. The use of ozone or plasma-activated oxygen species on ZnSe is found to create ZnO and SeO2, which are responsible for converting ZnSe from a hydrophobic to a hydrophilic surface. The interfacial layer between Al2O3 and ZnSe is mapped using high-resolution transmission electron microscopy and scanning transmission electron microscopy/energy dispersive spectroscopy. SeO2 is volatile and leaves a zinc-rich interface, which is 4.3 nm thick for the ultraviolet generated ozone pretreated sample and 2.5 nm for the plasma-enhanced ALD process.

     
    more » « less
  7. The COVID-19 pandemic has underscored the importance of research and development in maintaining public health. Facing unprecedented challenges, the scientific community developed antiviral drugs, virucides, and vaccines to combat the infection within the past two years. However, an ever-increasing list of highly infectious SARS-CoV-2 variants (gamma, delta, omicron, and now ba.2 stealth) has exacerbated the problem: again raising the issues of infection prevention strategies and the efficacy of personal protective equipment (PPE). Against this backdrop, we report an antimicrobial fabric for PPE applications. We have fabricated a nanofibrous silk-PEO material using electrospinning followed by zinc oxide thin film deposition by employing the atomic layer deposition technique. The composite fabric has shown 85% more antibacterial activity than the control fabric and was found to possess substantial superoxide dismutase–mimetic activity. The composite was further subjected to antiviral testing using two different respiratory tract viruses: coronavirus (OC43: enveloped) and rhinovirus (RV14: non-enveloped). We report a 95% reduction in infectious virus for both OC43 and RV14 from an initial load of ∼1 × 10 5 (sample size: 6 mm dia. disk), after 1 h of white light illumination. Furthermore, with 2 h of illumination, ∼99% reduction in viral infectivity was observed for RV14. High activity in a relatively small area of fabric (3.5 × 10 3 viral units per mm 2 ) makes this antiviral fabric ideal for application in masks/PPE, with an enhanced ability to prevent antimicrobial infection overall. 
    more » « less